On the density of truth in modal logics

نویسنده

  • Zofia Kostrzycka
چکیده

The aim of this paper is counting the probability that a random modal formula is a tautology. We examine {→, 2} fragment of two modal logics S5 and S4 over the language with one propositional variable. Any modal formula written in such a language may be interpreted as a unary binary tree. As it is known, there are finitely many different formulas written in one variable in the logic S5 and this is the key to count the proportion of tautologies of S5 among all formulas. Although the logic S4 does not have this property, there exist its normal extensions having finitely many non-equivalent formulas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post Completeness in Congruential Modal Logics

Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truthfunctional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congru...

متن کامل

Autoreferential semantics for many-valued modal logics

In this paper we consider the class of truth-functional modal many-valued logics with the complete lattice of truth-values. The conjunction and disjunction logic operators correspond to the meet and join operators of the lattices, while the negation is independently introduced as a hierarchy of antitonic operators which invert bottom and top elements. The non-constructive logic implication will...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

Reduction of Many-valued into Two-valued Modal Logics

In this paper we develop a 2-valued reduction of many-valued logics, into 2-valued multi-modal logics. Such an approach is based on the contextualization of many-valued logics with the introduction of higher-order Herbrand interpretation types, where we explicitly introduce the coexistence of a set of algebraic truth values of original many-valued logic, transformed as parameters (or possible w...

متن کامل

EQ-logics with delta connective

In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006